

NIVERSIDAD TÉCNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍA INGENIERÍA DE MANUFACTURA

Programa académico:	Ingeniería de Manufactura
Asignatura:	Procesos de Conformado por Deformación Plástica
	II
Código:	IMFH32
Área o nodo de formación:	Procesos CAD CAE
Año de actualización:	Semestre I de 2022
Semestre:	8
Tipo de asignatura:	Teórico-Práctica
Número de créditos:	3
Total horas:	4
Profesores:	
Director:	Ricardo Acosta Acosta

1. Breve descripción

Los procesos de manufactura basados en la deformación plástica de los materiales son utilizados en un alto porcentaje para obtener productos metalmecánicos finales o cuasi-finales, por su elevada productividad, baja generación de piezas rechazadas, buenos acabados superficiales, baja cantidad de retales, entre otras ventajas.

El curso proporciona las herramientas matemáticas y físicas necesarias para el modelado de los procesos de conformado por deformación plástica volumétrica, particularmente los de laminado, extrusión, trefilado y forjado, tanto en frío, en tibio como en caliente.

El presente curso pretende formar al Ingeniero de Manufactura en estos procesos, potenciando con ello, la solución a diversas problemáticas en las industrias, y posteriormente el mejoramiento y optimización de los procesos productivos, donde en la mayoría de casos el conocimiento y la experticia está en manos de personal empírico. El presente curso da continuación a la formación iniciada en el curso Procesos de conformado por deformación plástica I.

2. Objetivos

Objetivos del programa

- Formar al estudiante en el diseño para la fabricación, selección, mantenimiento y montaje de máquinas y elementos de máquinas con énfasis en máquinas-herramienta.
- Formar al estudiante en el modelado, simulación y validación de los diseños de productos y procesos, teniendo en cuenta la fabricación bajo enfoques PLM.
- Promover en el estudiante una formación integral con pensamiento crítico y reflexivo que le permita desempeñarse con idoneidad, humanismo y sentido ético.

Objetivos de la asignatura

- Formar al estudiante en la comprensión, selección, parametrización, montaje y mantenimiento de sistemas para conformado de piezas finales o cuasi-finales
- Seleccionar, integrar y/o diseñar los procesos de manufactura adecuados para un propósito en particular, teniendo en cuenta los recursos actuales y/o definiendo los nuevos recursos a adquirir
- Modelar y simular procesos de manufactura, máquinas y equipos aplicando conocimientos la mecánica de sólidos, termodinámica, transferencia de calor y mecánica de fluidos para satisfacer las necesidades de la industria

3. Resultados de aprendizaje

Resultados de aprendizaje del programa

- Seleccionar, integrar y/o diseñar los procesos de manufactura adecuados para un propósito en particular, teniendo en cuenta los recursos actuales y/o definiendo los nuevos recursos a adquirir.
- Modelar y simular procesos de manufactura, máquinas y equipos aplicando conocimientos la mecánica de sólidos, termodinámica, transferencia de calor y mecánica de fluidos para satisfacer las necesidades de la industria.

Resultados de aprendizaje de la asignatura

- Seleccionar, definir y aplicar criterios de aceptación o rechazo de piezas obtenidas por procesos de conformado por deformación plástica.
- Implementar con la ayuda de herramientas computacionales existentes y lenguajes de programación, modelos
- conformes a los fenómenos físicos presentes en los sistemas mecánicos y de manufactura.
- Definir la conveniencia técnico-económica de optar por un método convencional de maquinado o por procesos de conformado por deformación plástica

4. Contenido

Capítulo 1. INTRODUCCIÓN A LOS PROCESOS POR DEFORMACIÓN PLÁSTICA (8 h), Generalidades sobre los procesos de deformación plástica a piezas verdes. Influencia general de la temperatura, fuerza y velocidad de operación, en el desempeño de los procesos. Presentaciones comerciales de los materiales obtenidos por deformación plástica secundaria: láminas, chapa, tubos, perfiles.

Capítulo 2. DESCRIPCIÓN DE LOS PROCESOS DE CONFORMADO POR DEFORMACIÓN PLÁSTICA (38 h),

Embutido: principio operativo, máquinas y sus accionamientos, herramentales, dispositivos de sujeción, Ventajas y desventajas del proceso. Posprocesos, cuidado y mantenimiento de los herramentales, análisis técnico-económico del proceso.

Estampado o acuñado: principio operativo, máquinas y sus accionamientos, herramentales, dispositivos de sujeción, ventajas y desventajas, Posprocesos, cuidado y mantenimiento de los herramentales, análisis técnico-económico del proceso.

Doblado, curvado y rolado: Principio operativo, máquinas y sus accionamientos. Herramentales. Dispositivos de sujeción. Ventajas y desventajas. Posprocesos. Cuidado y mantenimiento de los herramentales. Análisis técnico-económico del proceso.

Troquelado. Principio operativo, máquinas y sus accionamientos, herramentales, aceros para troquelado y sus tratamientos térmicos, diseño de tira de recorte, diseño de troquel, ventajas y desventajas del proceso. Posprocesos, cuidado y mantenimiento de los herramentales, análisis técnico-económico del proceso.,

Generalidades sobre métodos avanzados de conformado (Advanced metal forming). Conformado súperplástico (Super-plastic Forming SPF). Conformado súper-plástico - Embutido profundo (Superplastic Forming / Deep Drawing. Conformado electro-hidráulico. Conformado electro-magnético. Extrusión por impacto. Conformado explosivo.

Capítulo 3. MODELADO Y SIMULACIÓN DE PROCESOS DE DEFORMACIÓN PLÁSTICA

(20 h), Introducción al manejo de programas computacionales.

Práctica 1.1: Lectura de cartas comerciales de materiales utilizados en conformado

Práctica 2.1: Práctica de embutido

Práctica 2.2: Práctica de acuñado

Práctica 2.3: Práctica de curvado

Práctica 2.4: Práctica de troquelado

Práctica 3.1: Simulaciones computacionales con software Deform 3d

Práctica 3.2: Visita técnica

5. Requisitos

IMFG32. Procesos de Conformado por Deformación Plástica I

IMFE43. Métodos Numéricos

IMFF63. Materiales Metálicos y tratamientos Térmicos

6. Recursos

Video tutoriales, Presentaciones, Laboratorio de Resistencia de Materiales, Taller de Máquinas y Herramientas, Salas de cómputo, Aulas de clase, Tutoriales

Bibliografía:

- [1] Altan, T., Ngaile, G., Shen, Gangshu. Cold and Hot Forging: Fundamentals and Applications. ASM International, Ohio, 2005. ISBN: 0-87170-805-1. www.asminternational.org.
- [2] Altan, T., "Short Course on Near Net Shape Cold, Warm and Hot Forging Without Flash," Engineering Research Center for Net Shape Manufacturing, The Ohio State University, 2002.
- [3] Kalpakjian, S., Schmid, S., Manufacturing Engineering and Technology, Prentice Hall, 2001.
- [4] SME Handbook, 1989, Tool and Manufacturers Engineering Handbook, Desk Edition (1989), 4th ed., Society of Manufacturing Engineers, 1989, p 15-8.
- [5] Douglas, J. R., & Altan, T. (1975). Flow Stress Determination for Metals at Forging Rates and Temperatures. Journal of Engineering for Industry, 97(1), 66. doi:10.1115/1.3438593
- [6] Tufekci, S. S., Ahmetoglu, M. A., Kinzel, G., & Altan, T. (1995). Process Simulation for Can Manufacturing by Deep Drawing and Ironing. SAE Technical Paper Series. doi:10.4271/950696.
- [7] Revista Forgings, www.forgingmagazine.com
- [8] [7] https://www.forgemag.com/articles/83781-comparative-analysis-of-forging-presses

7. Herramientas técnicas de soporte para la enseñanza

- 1) Utilización de ejercicio tipo de cada tema.
- 2) Estudio de casos aplicados.
- 3) Tutoriales.
- 4) Exposiciones orales
- 5) Análisis de la información
- 6) Proyecto Final

8. Trabajos en laboratorio y proyectos

Prácticas de laboratorio relacionados con los temas expuestos en el contenido, Requieren de una explicación de tipo demostrativo antes de la práctica de laboratorio

9. Métodos de aprendizaje

Consultas en la web, Consultas en material bibliográfico, Clases teóricas, Clases prácticas, Seminarios-Talleres, Prácticas externas, Tutorías, Estudio y trabajo en grupo, Estudio y trabajo autónomo e individual

, Se usará la metodología basada en los resultados realizando una verificación de los logros alcanzados en cada capítulo y del proceso total.

10. Evaluación

Exámenes parciales, Examen Final, Informes escritos de cada una de las prácticas de laboratorio., Tareas de seguimiento, Proyecto final